

Vydyne® R533 NAT

Ascend Performance Materials Operations LLC - Polyamide 66

Monday, November 4, 2019

General Information

Product Description

Vydyne R533 NAT is general-purpose, 33% glass-fiber reinforced PA66 resin. Available in natural, it is an injection-molding grade that is lubricated for good machine feed, flow and mold release.

Glass-reinforced Vydyne resins provide higher heat distortion temperature, resistance to creep and better dimensional stability when compared with unreinforced PA66. These products have good chemical resistance to a broad range of chemicals including gasoline, hydraulic fluids and most solvents.

Vydyne R533 NAT resin has tensile strength and modulus properties just below aluminum and zinc and can replace these metals in numerous applications due to an excellent balance of properties. Reduction in production costs, energy consumption and part weight are key advantages of Vydyne glass-fiber reinforced PA66 resins over aluminum and/or zinc die-cast parts.

ieneral			
Material Status	Commercial: Active		
Availability	Asia Pacific	• Europe	North America
Filler / Reinforcement	 Glass Fiber, 33% Filler by We 	eight	
Additive	 Lubricant 		
Features	Chemical ResistantCorrosion ResistantGood Dimensional StabilityGood Electrical Properties	Good FlowGood Mold ReleaseHeat StabilizedHigh Rigidity	 High Strength Lubricated Non-Corrosive
Jses	Appliance ComponentsAutomotive ApplicationsElectrical/Electronic Application	Engineered ApplicationsGearsLighting Applications	 Power/Other Tools Thin-walled Parts
Agency Ratings	ASTM D4066 PA011G35ASTM D6779 PA011G35EC 1935/2004	EU 10/2011EU 2023/2006FDA 21 CFR 177.1500	• NSF STD-51
Automotive Specifications	CHRYSLER MS-DB-41 CPN1853		
JL File Number	• E70062		
Appearance	 Natural Color 		
Forms	• Pellets		
Processing Method	Injection Molding		

ASTM & ISO Properties 1				
Physical	Dry	Conditioned	Unit	Test Method
Density	1.40		g/cm³	ISO 1183
Molding Shrinkage				ISO 294-4
Across Flow: 73°F, 0.0787 in	0.90		%	
Flow: 73°F, 0.0787 in	0.40		%	
Water Absorption (24 hr, 73°F)	0.80		%	ISO 62
Water Absorption				ISO 62
Equilibrium, 73°F, 50% RH	1.7		%	
Mechanical	Dry	Conditioned	Unit	Test Method
Tensile Modulus (73°F)	1.54E+6	1.15E+6	psi	ISO 527-2
Tensile Stress (Break, 73°F)	29700	21000	psi	ISO 527-2
Tensile Strain (Break, 73°F)	3.0	5.0	%	ISO 527-2

Vydyne® R533 NAT

Ascend Performance Materials Operations LLC - Polyamide 66

Mechanical	Dry	Conditioned	Unit	Test Method
Flexural Modulus (73°F)	1.48E+6	943000	psi	ISO 178
Flexural Stress (73°F)	42100	29000	psi	ISO 178
Poisson's Ratio	0.40			ISO 527-2
mpact	Dry	Conditioned	Unit	Test Method
Charpy Notched Impact Strength				ISO 179
-22°F	4.8	5.7	ft·lb/in²	
73°F	5.2	6.7	ft·lb/in²	
Charpy Unnotched Impact Strength				ISO 179
-22°F	33	40	ft·lb/in²	
73°F	38	43	ft·lb/in²	
Notched Izod Impact Strength				ISO 180
-22°F	4.8	5.7	ft·lb/in²	
73°F	5.7	6.7	ft·lb/in²	
hermal	Dry	Conditioned	Unit	Test Method
Heat Deflection Temperature				ISO 75-2/B
66 psi, Unannealed	500		°F	
Heat Deflection Temperature				ISO 75-2/A
264 psi, Unannealed	482		°F	
Melting Temperature	500		°F	ISO 11357-3
CLTE - Flow (73 to 131°F, 0.0787 in)	1.2E-5		in/in/°F	ISO 11359-2
CLTE - Transverse (73 to 131°F, 0.0787 in)	5.9E-5		in/in/°F	ISO 11359-2
RTI Elec				UL 746
0.030 in	248		°F	
0.06 in	248		°F	
0.12 in	248		°F	
RTI Imp				UL 746
0.030 in	212		°F	
0.06 in	212		°F	
0.12 in	221		°F	
RTI Str				UL 746
0.030 in	257		°F	
0.06 in	257		°F	
0.12 in	257		°F	
Electrical	Dry	Conditioned	Unit	Test Method
Volume Resistivity (0.118 in)	1.0E+14		ohms∙cm	IEC 60093
Dielectric Strength (0.0394 in)	510		V/mil	IEC 60243
Arc Resistance (0.118 in)	PLC 5		-,	ASTM D495
Comparative Tracking Index	. = •			IEC 60112
0.118 in	600		V	
High Amp Arc Ignition (HAI)			•	UL 746
0.030 in	PLC 0			020
0.06 in	PLC 0			
0.12 in	PLC 0	 		
High Voltage Arc Tracking Rate (HVTR)	PLC 1			UL 746
Hot-wire Ignition (HWI)	1 20 1			UL 746
0.030 in	PLC 4			OL 170
				
0.06 in	PLC 4			

Vydyne® R533 NAT

Ascend Performance Materials Operations LLC - Polyamide 66

Flammability	Dry	Conditioned	Unit	Test Method
Flame Rating				UL 94
0.030 in	HB			
0.06 in	HB			
0.12 in	НВ			
Glow Wire Flammability Index				IEC 60695-2-12
0.030 in	1380		°F	
0.06 in	1340		°F	
0.12 in	1470		°F	
Glow Wire Ignition Temperature				IEC 60695-2-13
0.030 in	1430		°F	
0.06 in	1340		°F	
0.12 in	1380		°F	
	Processing Info	ormation		
Injection		Dry Unit		
Drying Temperature		176 °F		

Processing Information			
Injection	Dry Unit		
Drying Temperature	176 °F		
Drying Time	4.0 hr		
Suggested Max Regrind	50 %		
Rear Temperature	536 to 590 °F		
Middle Temperature	536 to 590 °F		
Front Temperature	536 to 590 °F		
Nozzle Temperature	536 to 590 °F		
Processing (Melt) Temp	545 to 581 °F		
Mold Temperature	149 to 203 °F		

Notes

¹ Typical properties: these are not to be construed as specifications.